Product Description

Product Description

JX Petro Sucker Rods, Drive Rods and Pony Rods are manufactured from micro-alloyed, modified special quality hot rolled carbon or alloy steel. Bar and sucker rod dimensions and tolerances conform to API Spec 11B, latest edition, and AISI Steel Products Manual. It is used to connect the pumping unit on the ground and PCP. Sucker rod is an important part in the oil production system. Different grades of sucker rod has features of high strength, non-corrosive medium, good tensile and long service life.

Sucker Rods, Drive Rods and Pony Rods are manufactured from micro-alloyed, modified special quality hot rolled carbon or alloy steel. Bar and sucker rod dimensions and tolerances conform to API Spec 11B, latest edition, and AISI Steel Products Manual.

Sucker rods are available in 5/8″ (15.88 mm), 3/4″ (19.05 mm), 7/8″ (22.23 mm), 1″ (25.40 mm) and 1 1/8″ (28.58 mm).

Drive Rods for Progressing Cavity Pump application are available in 1″ (25.40 mm), 1 1/4″ (31.75 mm), and 1 1/2″ (38.10 mm) body diameter and in 25′ (7.62 m) lengths.


1. All rods are straightened and inspected by Eddy Current/magnetic for surface defects.

2. Both ends are upset by automatic high-speed hot forging. Rods are full length normalized to relieve residual stresses, air-quenched, and tempered to refine and homogenize grain structure, and surface nor peened to remove any remaining heat treat scale.

3. All rods are also nor peened to improve fatigue life. Upset pin blanks are machined and dimensions gauged. Pin threads are cold-formed to strengthen the thread from fatigue.

4. An inhibitor-lubricant is applied to each pin and thread protector installed.

5. An oil soluble coating protects rods from atmospheric corrosion in storage.

6. All rods are bundled to prevent handling damage duringtransportation to the well location.

7. Quality control inspections are performed at each step of the manufacturing process.

Product Parameters

Dimension table :
Sucker Rod & Pony Rod

Sucker Rod Nominal Value (mm) Sucker Rod Nominal Value
Rod Body diameter
Pin Size
Pin Size
Shoulder OD
Shoulder OD
Wrench Square width
(mm /in)
Wrench Square Length
(mm /in)
API sucker rod length with coupling (mm/ft)
16  5/8 15.88 15/16 23.81 1.250 31.8 22.2(0.875)  31.8(1.250)  609.2    (2′)
1219    (4′)
1828    (6′)
2438    (8′)
3048   (10′)
7620    (25′)
9144    (30′)
19  3/4 19.05 1-1/16 26.99 1.500 38.1 25.4(1.000) 
22  7/8 22.23 1-3/16 30.16 1.625 41.3 25.4(1.000) 
25 1    25.40 1-3/8 34.93 2.000 50.8 33.3(1.313) 
29 1-1/8 28.58 1-9/16 39.69 2.250 57.2 38.1(1.500)

Drive Rod & Pony Rod

Sucker Rod Nominal Value (mm) Sucker Rod Nominal Value
Rod Body diameter
Rod End Size 
Rod End Size
Length of Finished Product (mm) Length of Finished Product (ft)
25 1    25.40  7/8 22.23 1000
29 1-1/8 28.58 1 25.40
32 1-1/4 31.75 1 25.40
38 1-1/2 38.10 1-1/8 28.58

Mechannical Propterty 

Grade Tensile strength MPa Yield strength MPa Percentage elongation % Contraction percentage of area %  
C 620 – 795 ≥ 415 ≥ 13 ≥ 50 Scuker rod 
K 620 – 795 ≥ 415 ≥ 13 ≥ 60 Scuker rod 
D 795 – 965 ≥ 590 ≥ 10 ≥ 50 Scuker rod & Drive Rod
KD 795 – 965 ≥ 590 ≥ 10 ≥ 50 Scuker rod & Drive Rod
HL 965 – 1195 ≥ 795 ≥ 10 ≥ 45 Scuker rod & Drive Rod
HY 965 – 1195 N/M N/M N/M Scuker rod & Drive Rod

Chemical Composition of Common Sucker Rod Material 

AISI C Si Mn P S Cr Ni Mo V Cu Al
1541 0.36-0.45 0.15-0.35 1.35-1.65 ≤0.04 ≤0.04 ≤0.3 ≤0.35 ≤0.06 0.04-0.09 ≤0.35 ≤0.035
4120 0.17-0.24 0.17-0.37 0.4-0.7 ≤0.571 ≤0.571 0.8-1.1 ≤0.3 0.15-0.25 / ≤0.2 /
4130 0.26-0.33 0.17-0.37 0.4-0.7 ≤0.571 ≤0.571 0.8-1.1 ≤0.3 0.15-0.25 / ≤0.2 /
4138 0.37-0.45 0.17-0.37 0.9-1.2 ≤0.571 ≤0.571 0.9-1.2 ≤0.3 0.2-0.3 / ≤0.2 /
4138M 0.37-0.45 0.17-0.37 0.9-1.2 ≤0.571 ≤0.571 0.9-1.2 ≤0.3 0.2-0.3 0.04-0.09 ≤0.2 /
4140 0.38-0.45 0.17-0.37 0.5-0.8 ≤0.571 ≤0.571 0.9-1.2 ≤0.3 0.15-0.25 0.04-0.09 ≤0.2 /
4142 0.38-0.45 0.17-0.37 0.5-0.8 ≤0.571 ≤0.571 0.9-1.2 ≤0.3 0.15-0.25 0.04-0.09 ≤0.2 /
3130 0.22-0.29 0.15-0.35 0.71-1.0 ≤0.571 ≤0.571 0.42-0.65 0.72-1.0 0.01-0.06 / ≤0.2 /
4320 0.18-0.42 0.15-0.35 0.8-1.0 ≤0.571 ≤0.571 0.7-0.9 1.15-1.5 0.2-0.3 0.04-0.09 ≤0.35 ≤0.035
4330 0.3-0.35 0.15-0.35 0.8-1.1 ≤0.571 ≤0.571 0.8-1.1 1.65-2.0 0.2-0.3 0.05-0.10 ≤0.2 /
4621 0.18-0.23 0.17-0.37 0.7-0.9 ≤0.571 ≤0.571 ≤0.35 1.65-2.0 0.2-0.3 / ≤0.2 /
4720 0.19-0.23 0.15-0.35 0.85-1.05 ≤0.571 ≤0.571 0.8-1.05 0.9-1.2 0.22-0.30 0.02-0.05 0.40-0.60 /


Packaging & Shipping

Sucker Rod Weight List
Size 5/8″ 3/4″ 7/8″ 1″ 1-1/8″ 1-1/4″ 1-1/2″
kg/m 1.68 2.4 3.2 4.2 5.3 6.4 9.5
  • Package:
    • Metal pallet for saving space and convenient to transport.
    • Plastic paper covering the sucker rod and metal box covering the rod head and then metal pallet for better corrosion and abrasion resistance.
  • Pallet size (L × W× H):
    • 7930mm × 550mm × 330mm
    • 8300mm × 550mm × 330mm
    • 9440mm × 550mm × 330mm
  • Container size:
    • 40′ GP (40′ general purpose container).
Dimension Length Ft. Pieces/ bundle Net weight KG Gross weight KG Total pieces
5/8″ 25′ 150 1930 1938 1920
26′ 150 1945 1953 1920
30′ 150 2210 2218 1690
3/4″ 25′ 100 1850 1858 1345
26′ 100 1865 1873 1334
30′ 100 2120 2128 1174
7/8″ 25′ 80 1920 1925 1039
26′ 80 2012 2017 991
30′ 80 2290 2290 897
1″ 25′ 60 1915 1923 780
26′ 60 2006 2014 744
30′ 60 2278 2283 657
1-1/8″ 25′ 50 2044 2052 609
26′ 50 2135 2143 583
30′ 50 2392 2398 521

Detailed Photos




Company Profile

After-sales Service: Online Service
Warranty: 12 Month
Manufacturing Process: Forging
Surface Treatment: Polishing
Operation Pressure: Not Applicable
Material: Alloy
US$ 30/Piece
1 Piece(Min.Order)

Request Sample


Types of Couplings

A coupling is a device that connects two shafts together. It transmits power from one end to another and is used for joining rotating equipment. A coupling is flexible and can accommodate a certain amount of end movement and misalignment. This allows for more flexibility in applications. Various types of couplings are available, and each one serves a specific purpose.

Shaft couplings

There are many types of shaft couplings, and they are used in a wide range of applications. The type you need depends on the torque, speed, and horsepower you need, as well as the size of the shaft and its spatial limitations. You may also need to consider whether the coupling will accommodate misalignment.
Some shaft couplings are flexible, while others are rigid. Flexible couplings can accommodate up to two degrees of misalignment. They are available in different materials, including aluminum, stainless steel, and titanium. They can also be known by different names, depending on the industry. Some couplings can also be used in a single or multiple-shaft application.
The first type of shaft coupling is a rigid coupling, which consists of two parts that fit together tightly around the shafts. These couplings are designed to have more flexibility than sleeved models, and they can be used on fixed shafts as well. The flanged coupling, on the other hand, is designed for heavy loads and is made of two perpendicular flanges. The flanges are large enough to accommodate screws and are generally used with heavy-duty applications.
CZPT shaft couplings are a great choice if you’re looking for a shaft coupling that delivers high performance, durability, and low cost. These metal disc-style couplings provide low backlash and high torsional stiffness. Their high misalignment tolerance reduces reaction loads on connected components, which makes them ideal for high-speed precision applications. Available in single and double-disc models, they have torque ratings of up to 2,200 in-lbs. (250N) and are available in fourteen sizes.
When using shaft couplings, it is important to choose the right type for your application. Backlash can cause a shaft coupling to break or become unusable. In order to prevent this from happening, you should replace worn or loose parts, and ensure that the hub and key are evenly positioned with the shaft. If you’re using a shaft coupling in a motion-control system, it is important to keep the torque level consistent.

Flexible couplings

Flexible couplings are a type of coupling used to connect two shafts. They are made of rubber or plastic and allow for axial movement of the connected equipment. They do not require lubrication and are resistant to fatigue failure. Flexible couplings are useful for a number of applications. A common type of flexible coupling is the gear coupling, which has gear teeth inside its sleeve. Another type of flexible coupling is the metallic membrane coupling. A metallic membrane coupling is flexible due to flexing metallic discs.
One major disadvantage of flexible couplings is their inability to fit certain types of pipe. This is because most couplings need to be stretched to fit the pipe. This problem is often the result of a change in pipe technology. Traditionally, drain and soil pipe is made of ductile iron or cast iron. Today, most pipes are made of PVC, which has a larger outside diameter than either cast or ductile iron. Because of these changes in pipe technology, many coupling manufacturers have not updated their mold sizing.
Flexible couplings can be either metallic, elastomeric, or a combination of the three. While there are some common characteristics of each type, you should always consider the tradeoffs of each type before choosing one. Generally, the most important considerations when selecting a flexible coupling are torque, misalignment, and ease of assembly and maintenance.
Flexible couplings are used in a wide range of industries. They are useful for connecting two pipes to ensure torque transfer. Although the types available are different, these are the most adaptable couplings in the market. They can withstand movement, vibration, and bending without causing any damage to the piping.

Clutch couplings

A clutch coupling connects two rotating shafts by friction. The clutch engages power when the engine is running, disengaging power when the brake is applied. Clutch couplings are used in applications where the speed of a machine is variable or where continuous service is required. The clutch can transmit power, torque, and axial force.
Clutch couplings come in a variety of styles and configurations. Some couplings are flexible, while others are rigid. Flexible couplings are available in a variety of materials, including stainless steel and aluminum. Some couplings also have a non-backlash design, which helps compensate for misalignment.
Clutch couplings may be synchronous or asynchronous. Synchronous couplings engage and disengage automatically when the driven machine exceeds its output speed. These couplings are synchronized by a synchronizing mechanism. When the output speed is exceeded, the synchronizing mechanism initiates the engagement process. The synchronizing mechanism does not engage or disengage when the output speed drops.
High speed clutches are available from a variety of manufacturers. Some manufacturers offer OEM assembly, repair services, and third-party logistics. These manufacturers serve the automotive, chemical, food, and wood industries, as well as the oilfield and material handling industries. Custom clutches can be manufactured for specific applications and can be fitted with additional features, such as precision machined teeth or keyway slots and grooves.
Couplings are available in PCE, C/T, and metric bores. Typically, the size of the input and output shafts will determine which type of coupling is needed. In addition, clutches may be configured for intermediate or high speeds, depending on the required torque.

Clamped couplings

Clamped couplings are commonly used in a variety of industries. They can be used in medical equipment, dental equipment, military equipment, laboratory equipment, and in precision industrial controls. They are available in a wide variety of sizes and keyways. This type of coupling offers a number of advantages, including ease of installation and quick and easy replacement.
A clamp coupling connects two parts by compressing them together. The clamping elements can be formed in a variety of ways, but they all have a gap between their surfaces. This friction squeezes the two parts together, much like pulling two rubber gloves apart. This type of coupling is also useful for joining two hoses or piping units.
Clamped couplings are designed with a single or double clamping shaft. The clamping parts are mounted in two halves and are held together by eight socket head cap screws. They offer high torque capacity and require little installation space. Their high rigidity ensures good positioning accuracy, making them ideal for dynamic drives. In addition, they are wear-free and offer simple radial assembly.
The invention relates to a method and system for clamping pipes to a tank vessel. This invention also relates to a method of loading and unloading tank vessels. The method can be used in oil production platforms and other platforms. A single point mooring method is also used in oil production platforms.
Clamped couplings can also be flexible. They can join two shafts together while allowing a small amount of end movement and misalignment. These couplings may also be used in the assembly of motors and gearboxes.

CZPT’s coupling

CZPT couplings are designed to be flexible, allowing them to accommodate misaligned shafts and transmit torque in either direction. They are made with three discs, two hubs, and a center that are arranged with grooves and fins. These features allow for two degrees of freedom during assembly, and can accommodate misalignment of up to 5% of the shaft diameter.
CZPT couplings have many uses. For example, they can be used to join two parallel coaxial rotating shafts. Their ability to transmit torque at the same rotation mechanism and speed makes them ideal for applications where electrical currents may be a problem. Because the couplings are not made of metal, they are electrically isolated. Designers should test their couplings during the prototype stage to ensure they are working properly.
The CZPT coupling consists of two hubs with one slot on each. An intermediate disk is located between the two hubs. The discs are used to reduce or prevent wear on other machine parts. CZPT couplings are inexpensive and easy to replace. They also have electrical insulation, which makes them easy to repair or replace.
CZPT couplings are a popular choice for stepper motor-driven positioning stages. The plastic center disc offers electrical isolation and absorbs shocks from frequent start/stops. These couplings are available in through-hub and blind-bore styles and can be installed in many applications.
CZPT couplings also allow for small degrees of shaft misalignment. This allows them to function in systems where shaft access is limited. They are easily removed without tools.
China wholesaler API 11b Norris Sucker Rod Drive Rod and Pony Rod and Coupling   coupling beamChina wholesaler API 11b Norris Sucker Rod Drive Rod and Pony Rod and Coupling   coupling beam
editor by CX 2023-05-26