Product Description

Flexible.

Compact size has powerful transmission capacity.

Metal-built.

Easy-mount-and-demount.
 

MODEL
NO.
BORE DIA D DH I S MAX.
TORQUE
WEIGHT SHELL
MIN. MAX. A B WEIGHT
mm mm mm mm mm mm mm kN.m kg kg
CHC3812 9.50 16.00 45.00 25.00 64.90 30.00 4.90 0.249 0.3 61.00 57.00 0.1
CHC4012 11.00 22.00 61.00 35.00 79.40 36.00 7.40 0.329 0.8 75.00 75.00 0.2
CHC4016 15.00 30.00 77.00 50.00 79.40 36.00 7.40 0.419 1.4 92.00 75.00 0.3
CHC5016 15.00 38.00 96.00 60.00 99.70 45.00 9.70 0.791 2.6 111.00 85.00 0.6
CHC5018 19.00 45.00 106.00 70.00 99.70 45.00 9.70 0.979 3.5 123.00 85.00 0.8
CHC6018 22.00 55.00 127.00 85.00 119.50 54.00 11.50 1.810 6.0 142.00 106.00 1.2
CHC6571 25.00 75.00 151.00 110.00 119.50 54.00 11.50 2.610 9.5 167.00 106.00 1.6
CHC8018 30.00 78.00 169.00 115.00 149.20 67.00 15.20 3.920 14.0 186.00 130.00 2.5
CHC8571 35.00 95.00 202.00 140.00 146.20 67.00 15.20 5.640 20.0 220.00 130.00 2.7
CHC1571 38.00 110.00 232.00 160.00 200.80 91.00 18.80 8.400 34.0 248.00 144.00 3.0
CHC12018 48.00 120.00 254.00 170.00 260.80 119.00 22.80 12.700 50.0 309.00 185.00 7.2
CHC12571 58.00 150.00 302.00 210.00 260.80 119.00 22.80 18.300 65.0 357.00 185.00 9.0
CHC16018 68.00 160.00 341.00 220.00 360.10 165.00 30.10 26.400 122.0 402.00 240.00 9.6
CHC16571 78.00 200.00 405.00 280.00 360.10 165.00 30.10 38.100 185.0 466.00 240.00 16.3
CHC20018 88.00 205.00 424.00 295.00 519.60 241.00 37.60 54.100 288.0 490.00 270.00 19.0
CHC20571 98.00 260.00 505.00 375.00 519.60 241.00 37.60 77.800 334.0 570.00 270.00 25.0

chain coupling

Can chain couplings accommodate parallel misalignment?

Yes, chain couplings are designed to accommodate a certain degree of parallel misalignment between the connected shafts. Parallel misalignment refers to the situation where the axes of the two shafts are not perfectly aligned and run parallel to each other but at a distance.

Chain couplings have some inherent flexibility that allows them to tolerate a certain amount of parallel misalignment. The flexibility is primarily provided by the roller chain, which can compensate for small parallel displacements between the shafts. This flexibility helps to reduce stress on the coupling components and allows for smooth operation even in the presence of parallel misalignment.

However, it is important to note that chain couplings have limitations in terms of parallel misalignment. Excessive parallel misalignment beyond the specified limits can lead to increased stress, uneven load distribution, accelerated wear, and potential coupling failure. The manufacturer’s specifications and guidelines should be followed to ensure that the parallel misalignment remains within the acceptable range for the specific chain coupling being used.

Proper alignment during installation is crucial to minimize parallel misalignment. The shafts should be aligned as closely as possible to ensure optimal performance and longevity of the chain coupling and the connected machinery or equipment. In some cases, additional measures such as shims or adjustable mounts may be necessary to achieve the desired alignment.

Regular inspection and maintenance of the chain coupling are also important to identify and address any parallel misalignment issues that may arise over time. If significant parallel misalignment is detected, corrective measures should be taken to realign the shafts or consider alternative coupling options that are better suited for parallel misalignment requirements.

In summary, chain couplings can accommodate a certain degree of parallel misalignment, but excessive misalignment should be avoided. Proper alignment during installation and adherence to manufacturer’s guidelines are essential for ensuring optimal performance, reliability, and longevity of the chain coupling and the connected machinery or equipment.

chain coupling

What are the key components of a chain coupling?

A chain coupling consists of several key components that work together to transmit power and accommodate misalignments. Here are the main components of a chain coupling:

  • Sprockets: Sprockets are the toothed wheels that engage with the chain. They are typically made of steel or other durable materials and have specially designed teeth that mesh with the chain rollers. The sprockets provide the driving and driven connections, transmitting torque from one shaft to another.
  • Roller Chain: The roller chain is a series of interconnected links with rollers between them. It is looped around the sprockets, with the rollers engaging with the sprocket teeth. The roller chain transfers the rotational motion from the driving sprocket to the driven sprocket, allowing power transmission between the shafts.
  • Connecting Pins: Connecting pins are used to join the links of the roller chain together, forming a continuous loop. These pins are inserted through the pin holes in the chain links and secured with retaining clips or other fasteners. They ensure the integrity and strength of the chain.
  • Bushings or Bearings: Bushings or bearings are used to support the shafts and allow them to rotate smoothly within the chain coupling. They are typically inserted into the bores of the sprockets and provide a low-friction interface between the shaft and the coupling components.
  • Guard or Cover: In some chain couplings, a guard or cover is added to enclose the sprockets and chain. This serves as a protective barrier, preventing contact with moving parts and reducing the risk of accidents or injuries. The guard or cover also helps to contain lubrication and protect the chain from contaminants.
  • Lubrication: Lubrication is essential for the smooth operation and longevity of a chain coupling. Proper lubrication reduces friction, wear, and noise. Lubricants, such as chain oil or grease, are applied to the chain and sprockets to minimize frictional losses and prevent premature wear.

These components work together to provide a reliable and efficient power transmission in chain couplings. The sprockets engage with the roller chain, and as one sprocket rotates, it drives the chain, causing the other sprocket and the connected shaft to rotate. The roller chain and its components, along with lubrication, allow for flexibility and compensation of misalignment between the shafts.

chain coupling

How does a chain coupling work?

A chain coupling works by connecting two rotating shafts using a roller chain and sprockets. The sprockets have teeth that engage with the rollers of the chain, creating a positive drive mechanism.

When the first shaft rotates, it drives the sprocket attached to it. The engaged chain then transfers the motion to the second sprocket and the second shaft, causing it to rotate as well.

The chain coupling design allows for flexibility and misalignment compensation. In the presence of angular misalignment between the shafts, the chain can accommodate the deviation by flexing and adjusting its position on the sprockets. Similarly, if there is parallel misalignment or axial displacement, the chain coupling can flex and adjust to maintain proper engagement and transmit torque between the shafts.

The engagement between the sprocket teeth and the chain rollers ensures a positive drive, meaning that the torque from the driving shaft is efficiently transferred to the driven shaft. This makes chain couplings suitable for applications where high torque loads need to be transmitted.

Proper lubrication is essential for the smooth operation and longevity of a chain coupling. Lubricants such as oil or grease are applied to the chain and sprockets to reduce friction and wear. The lubrication helps prevent heat buildup and ensures the chain and sprockets rotate smoothly, minimizing power losses and extending the lifespan of the coupling.

In summary, a chain coupling operates by using a roller chain and sprockets to connect two rotating shafts. The engaged chain transfers torque from the driving shaft to the driven shaft, while accommodating misalignment between the shafts. The positive drive mechanism and the flexibility of the chain make chain couplings effective in transmitting high torque loads while allowing for smooth and reliable power transmission.

China Standard CHC5020 Shaft Coupling Roller Chain Chain Coupling  China Standard CHC5020 Shaft Coupling Roller Chain Chain Coupling
editor by CX 2023-09-04